

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Electromagnetics 1 (ENEE 3408)

MATLAB Assignments

Prepared by

$$
\text { Yazan Yousef - } 1170249
$$

Section No. 1

Instructor

Dr. Ashraf Al-Rimawi

BIRZEIT

April 2020

Q1:-

$$
\begin{aligned}
E \cdot Q_{1} & =\frac{k Q_{1}}{r^{3}} \cdot \vec{r} \\
& =\frac{\left(9 \times 10^{9}\right)\left(8 \times 10^{-9}\right)}{(1.4142)^{2}}\left[0 \hat{a}_{x}+-\hat{a}_{y}-\hat{a_{z}}\right] \\
& =\hat{a}_{x}-25.4558 \hat{a_{y}}-25.4558 \hat{a_{z}}
\end{aligned}
$$

$$
\begin{aligned}
E Q_{2} & =\frac{k Q_{2}}{r^{3}} \vec{r} \\
& =\frac{\left(9 \times 10^{9}\right)\left(8 \times 10^{-9}\right)}{(1.4142)^{2}}\left[0 \hat{a}_{x}+1 \hat{a}_{y}-1 \hat{a}_{z}\right] \\
& =0 \hat{a_{x}}+25.4558 \hat{a_{y}}+-25.4558 \hat{a_{z}} .
\end{aligned}
$$

$$
\begin{aligned}
E_{\text {_Line }} & =\frac{n \rho_{L}}{z}\left(\frac{2 a}{\sqrt{z^{2}+a^{2}}}\right)[\vec{R}] \\
& =\frac{\left(9 \times 10^{9}\right)\left(4 \times 10^{-9}\right)}{4.9497}\left(\frac{(2)(4.9497)}{\left.\sqrt{(4.9497)^{2}+(4.9997)^{2}}\right)\left[3.5 a_{x}+3.5 \hat{a}_{y} y_{02}\right.}\right. \\
& =-7.2731 \hat{a} x-7.2731 \hat{a}_{y}+0 \\
E T_{0} T & =-7.2731 \hat{a}_{x}-7.2731 \hat{a}_{y}-50.9117 \hat{a}_{z}
\end{aligned}
$$

Code:

```
clear;
```

clc;
Q1 $=8 \mathrm{e}-9$;
Q2 $=8 \mathrm{e}-9$;
ro_L $=4 \mathrm{e}-9$;
line_initial_point = [70 0 7 ;
line_final_point $=\left[\begin{array}{lll}0 & 7 & 0\end{array}\right]$;
Point_Q1 = [$\left.0 \begin{array}{lll}0 & 1 & 1\end{array}\right] ;$
Point_Q2 = [$\left.0 \begin{array}{lll}0 & -1 & 1\end{array}\right] ;$
Point_EF $=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$;
epsilōn = (1e-9/(36*pi));
k = (1/(4*pi*epsilon));
R_Q1E = Point_EF - Point_Q1;
R_Q2E = Point_EF - Point_Q2;
R_LIP = (Point_EF - line_initial_point);
R_line $=$ (line_final_point - line_initial_point);
Mag_R_Q1E = norm(R_Q1E);
Mag_R_Q2E $=\operatorname{norm}(R-Q 2 E)$;
Mag_R_line $=$ norm(R_line);
Mag_LIP = norm(line_initial_point);
cos_theta $=\left(\operatorname{dot}\left(R _l i n e, ~ R _L I P\right) /\left(M a g _R _l i n e * M a g _L I P\right)\right) ;$
sin_theta $=$ sqrt(1-(cos_theta)^2);
z = Mag_LIP*sin_theta
a = Mag_LIP*cos_theta;
b = Mag_R_line - a;
Point_z = [3.5 3.5 0];
Mag_z_vector = norm(Point_z);
R_z = (Point_EF - Point_z)./(Mag_z_vector);
$\mathrm{EQ1}=\left(\mathrm{k}^{*} \mathrm{Q1} /\left(\mathrm{Mag}_{2} \mathrm{R} _\mathrm{Q1E}\right)^{\wedge} 3\right) \cdot{ }^{*} \mathrm{R} _$Q1E;
$\mathrm{EQ} 2=\left(k * Q 2 /\left(\mathrm{Mag}_{-} \mathrm{R}_{-} \mathrm{Q} 2 \mathrm{E}\right)^{\wedge} 3\right) \cdot{ }^{*} \mathrm{R}_{-} \mathrm{Q} 2 \mathrm{E}$;
E_line $=\left(k^{*} r o_{-} L / z\right) *\left(\left(b / \operatorname{sqrt}\left(z^{\wedge} 2+b^{\wedge} 2\right)\right)+\left(a / \operatorname{sqrt}\left(z^{\wedge} 2+a^{\wedge} 2\right)\right)\right) * R _z$
E_Tot $=\mathrm{EQ1}+\mathrm{EQ2}+\mathrm{E}$ _line
Result
$\begin{array}{lll}=-7.2731 & -7.2731 & -50.9117\end{array}$

Q2:

$$
\begin{aligned}
& E=\frac{D}{2 \epsilon_{0}}\left(1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right) \\
& E=\frac{2 \mu}{2 \epsilon_{0}}\left(1-\frac{1}{\sqrt{2}}\right)\left[0 \hat{a}_{x}+0 \hat{a_{y}}+1 \hat{a}_{z}\right] \\
& E=0 \hat{a}_{x}+0 \hat{a}_{y}+3.308 \times 10^{4} \hat{a z}
\end{aligned}
$$

Code:
clc;
clear;

Epsilono=8.854e-12;
D=2e-6;
$\mathrm{P}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$;
R = 1;
Z = 1;
$E=(D /(2 * E p s i l o n o)) *\left(1-\left(Z /\left(\operatorname{sqrt}\left(Z^{\wedge} 2+R^{\wedge} 2\right)\right)\right)\right) ;$
E_tot $=\mathrm{E} . *\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$

Result =

E_tot =
$1.0 \mathrm{e}+04$ *
$0 \quad 0 \quad 3.3080$

Qu:

$$
P_{L}=2 \mu \mathrm{c} / \mathrm{m}
$$

Find $[\psi$ home $x=0$ to $x=1]$:
Gauss surface of a cube.
charge enclose $=$
$2 m \cdot \frac{2 \mu c}{m}=4 \mu c$
The total flux is $4 \mu \mathrm{c}$

Passing through 4 sides.
so one side has a flux of
$1 a c$
but we only need hall a side So $\rightarrow f 10 x=0.5 \mu c$

Code:

```
clc; %clear the command line
clear; %remove all previous variables
ro_L = 2e-6;
L_start = [0 -1 1];
L_end = [0 1 1];
Line = L_end - L_start;
Mag_Line = norm(Line);
Total_Charge_Q = ro_L*Mag_Line;
Line_\overline{Charges = = 1000\overline{0}}\mathrm{ ;}
Q = Total_Charge_Q/Line_Charges;
```

$a z=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right] ; \quad$ \% unit vector in the z direction
x_lower=0; \%the lower boundary of x of the plane
x_upper=1; \% the upper boundary of x of the plane
y_lower=-100; \%the lower boundary of y of the plane
y_upper=100; \%the upper boundary of y of the plane
Number_of_x_Steps=20; \%step in the x direction
Number_of_y_Steps=1000; \%step in the y direction
$d x=\left(x _u p p e r-x _l o w e r\right) / N u m b e r _o f _x _S t e p s ; \quad$ othe x increment
$d y=\left(y _u p p e r-y _l o w e r\right) / N u m b e r _o f _y _S t e p s ; \quad$ othe y increment
dP = Mag_Line/Line_Charges;
flux=0; \%initialize the flux to 0
yl = 4*pi;
$\mathrm{ds}=\mathrm{dx}$ * dy ;
for $p=-1+d P$: $d P$: $1-d P$
for $j=1:$ Number_of_y_Steps
for $i=1:$ Number_of_x_Steps
$x=x _l o w e r+0.5 * d x+(i-1) * d x ; \quad \% x$ component of the center of a grid
$y=y _l o w e r+0.5 * d y+(j-1) * d y ; ~ \% y ~ c o m p o n e n t ~ o f ~ t h e ~ c e n t e r ~ o f ~ a ~ g r i d ~$
$\mathrm{P}=[\overline{\mathrm{x}} \mathrm{y} 0] ; \quad$ othe center of a grid
$C=\left[\begin{array}{lll}0 & \mathrm{p} & 1\end{array}\right]$;
$R=P-C$; \quad vector R is the vector pointing from the point charge
RMag $=$ norm(R); \%magnitude of R
R_Hat $=R /$ RMag; \%unit vector in the direction of R
flux $=f l u x+Q^{*} d s^{*}\left(-1 * R _H a t(3)\right) /(y 1 * R M a)^{\wedge} 2 e n d$
end
end
flux $=$
4.9995e-07

$$
\left.\begin{array}{l}
Q 5: \\
A:[3,4,12] \\
B:[2,2,2] \\
r_{A}
\end{array}=\sqrt{196}=13\right] \begin{aligned}
r_{B} & =V_{12} \\
U_{A} & =\frac{1.5-1}{\epsilon_{0}} \cdot \frac{1}{r_{A}} \\
& =4.3499 \times 10^{9} \cdot v_{0} 1 t \\
U_{B} & =\frac{1.5-1}{\epsilon_{0}} \cdot \frac{1}{r_{13}} \\
& =1.6324 \times 10^{10} \text { volt } \\
U_{A B} & =V_{B}-V_{A} \\
& =1.1974 \times 10^{10} \text { volt }
\end{aligned}
$$

Code:
clear;
clc;
epsilon $=(1 e-9 /(36 * p i)) ;$
$A=\left[\begin{array}{lll}3 & 4 & 12\end{array}\right] ;$
$B=\left[\begin{array}{lll}2 & 2 & 2\end{array}\right]$
$r_{\text {_ }}=\operatorname{norm}(A)$;
$r_{-} B=\operatorname{norm}(B)$;
$\mathrm{VA}=(0.5 / \mathrm{epsilon}) *\left(1 / r _A\right)$
$\mathrm{VB}=(0.5 / \mathrm{epsilon}) *\left(1 / r_{-}{ }^{-}\right)$
$\mathrm{VAB}=\mathrm{VB}-\mathrm{VA}$
$V A B=$
$1.1974 \mathrm{e}+10$

